Descriptive Set Theory Lecture 13

Proof (ii)
$$L \rightarrow (iii)$$
. Trivial, because taking fibers commutes with
complementes (also unions at here all
 D , $(1, ...)$, i.e. $(A^c)_x = (A_x)^c$.

Claim 2. IF FEXXY is manyer (resp. nontice dasse) then H*XEX (Fx is manyer (resp. nontice dasse)). Proof. It's anorgh to show the number dasse statement. Making F bigger if meessing, we assure M F is loved. Note Mt proj x X x Y is an open map

by the def. of product top. By taking co-pleasants, it is enough to pove let if WEXXY is a dense open ut, her to (Wx is dense open). The map Y -> XxY is an enbedding I Wx is the preimage of H= (x,y) W under this map at is heave open. Fix a off basis (Vn) for Y we read do show het $\forall x \forall u (W_x \land V_u \neq \emptyset) <=> \forall u \forall x (W_x \land V_u \neq \emptyset)$ Fix this y, I let Un = YxxX: Wx AVn = D3. We want to show this is concept, so we'll show tet Un is open duse. For open, whe M_{f} $U_{h} = proj_{X}(W\Lambda(X \times V_{h}))$, hence is open. For dusity, let $U \in X$ be when M_{f} open. By the density of W, $W \cap (U \times V_{h}) \neq \emptyset$, so $proj_{X}(W \cap (U \times U_{h})) \neq \emptyset$, Hence $U_{h} \cap U \neq \emptyset$.

(i) Since A is BM (Daire meas.), A=WAM, here WEXXY is open it MEXXY is weager. But then VxEX, Ax= WxAMx J Wx is open. Thus by Unim 2, VXCX (Ax=WxAMx J Mxis mager), hunce Free X (Ax is BM).

(iii) ->. Also by Uni-2.

(iii) <=. We prove the contrapositive: A is normerger => 3 * (Ax is nonnecger), Beise A is BM, A = WAM, here M is nearer I W is open it nonnenger bene A is walkager. By 2nd Ablity of X Il Y, W is a ctbl mion of open rectanges, so one them, denoted U×V, must be renneager. By Claim 1, but UEX I VEY are wunneager at we have: Vx EU (Wx ZV) hence Vx EU (Wx is winage) Thus, VxEU (Ax = Wx a Mx J Wx is nonneager). Thus, Yx EU (Ax is nonneager) hence I * x EX (Ax is nonenges).

Remark. The Daire meas assumption on A is necessary for (ii). Indeed, Mur is a non-BM subset A & IR2 Kat intersects every line in at most 2 points.

Applications of Kuratouski-Illan.

Prop. Finite product of 2nd dbl Baire spaces is Baire. Proof. Easy exercise.

The topological O-1 law. In DST terminology, this just says that eventual equality relation is generically egotic. let (Xn) be a xy. of 2nd athl top spaces al let X:= TT X ... We define the main equivalence relation IE. (x) on X by: x IEo(X) y :<=> V^Qn ×(n) = y(n). This is the relation of eventual equality. Call a set Y = X is Eo-invariant if it is a union of Eo-dames. Note We for such a cit Y, al yEY, we have Mt Un Ur. Vx, Ux, (xo, k11-1,xu, yux1) Yux21-") εY, atomic

Theorem. Ito is generically ergodic, i.e. even BM Ito-invariant subset of X is meager or coneager. Proof. This is a vice excepte of use of localization, let Y be an IEo-inv BM set al suppose V is nonneager. by the 100% lenna, I basic open at û = X s.t.

Û It Y. This Û is of the form U. X U. X. K. K. K. V*2EX, V*xEU (x,2) eY. This V#2EX,] xEU (x, z) EY. But by Eo-invariance, $\forall x \in X_{\leq n} (x_1 z) \in Y$. $\operatorname{Ims}'_{x_1 z} \notin X_{>n} \forall x \in X_{< n}$ $|x_1 z| \in Y$. By KU again, $\forall (x_1 z) \in X (x_1 z) \in Y$, so Y is comencyel. Theorem let X be a weenpty perfect Polish space (e.g. IR). There is no Baine neas. well-ordering of X, i.e. I well-ordering < of X that is BM as a subset of X². Proof Suppose < is such a well-ordering. An initial regnent is a subset of X closed downward waller <. <u>Claim.</u> If A = X is non-measur BM initial usment, then (< | A) < X2 is nonneager. Proof A cla,